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Selected theoretical developments in modeling of deposition of sub-micrometer size 
(submicron) particles on solid surfaces, with and without surface diffusion, of interest 
in colloid. polymer, and certain biological systems, are surveyed. We review deposition 
processes involving extended objects, with jamming and its interplay with in-surface 
diffusion yielding interesting dynamics of approach to the large-time state. Mean-field 
and low-density approximation schemes can be used in many instances for short and 
intermediate times, in large enough dimensions. and for particle sizes larger than few 
lattice units. Random sequential adsorption models are appropriate for higher particle 
densities (larger times). Added diffusion allows formation of denser deposits and leads to 
power-law large-time behavior which, in one dimension (linear substrate, such as DNA), 
was related to diffusion-limited reactions, while in two dimensions (planar substrate), 
was associated with evolution of the domain-wall and defect network, reminiscent of 
equilibrium ordering processes. 

Kqwords: Adsorption; Deposition; Attachment; Surface; Interface; Adhesion; Colloid; 
Protein; Particle; Interaction; Dynamics; Kinetics; Submicron 

1. INTRODUCTION 

1 .l. Surface Deposition of Submicron Particles 

Surface deposition of submicron particles is of immense practical 
importance [ 1 - 41. Typically, particles of this size, colloid, protein or 
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422 V. PRIVMAN 

other biological objects, are suspended in solution, without sedimen- 
tation due to gravity. In order to maintain the suspension stable, 
one has to prevent aggregation (coagulation) that results in larger 
flocks for which gravity pull is more profound. Stabilization by 
particle - particle electrostatic repulsion or by steric effects, etc., is 
usually effective for a sufficiently dilute suspension. But this means 
that even if a well-defined suspension of well-characterized particles 
is available, it cannot be always easily observed experimentally in 
the bulk for a wide range of particle interactions. For those interac- 
tion parameters for which the system is unstable with respect to  
coagulation, the time of observation will be limited by the coagula- 
tion process which can be quite fast. 

One can form a dense deposit slowly, if desired, on a surjcice. Indeed, 
particles can be deposited by diffusion, or more realistically by con- 
vective diffusion [5] from a flowing suspension, on collector surfaces. 
The suspension itself need not be dense even though the on-surface 
deposit might be quite dense, depending of the particle-particle 
and particle- surface interactions. Dilution of suspension generally 
prolongs an experiment aimed at reaching a certain surface coverage. 
Thus, surface deposition has been well established as an impor- 
tant tool to probe interactions of matter objects on the submicron 
scale [l-41. 

1.2. Particle Jamming and Screening at Surfaces 

Figure 1 illustrates possible configurations of particles at a surface. 
From left to right, we show particles deposited on the surface of a 
collector, then particles deposited on top of other particles. The latter is 
possible only in the absence of significant particle - particle repulsion. 
The two situations are termed monolayer and multilayer deposition 
even though the notion of a layer beyond the one exactly at the surface 
is only approximate. We next show two effects that play important 
roles in surface growth. The first is jamming: a particle marked by an 
open circle cannot fit in the lowest layer at the surface. A more realistic 
two-dimensional (20)  configuration is shown in the inset. 

The second effect is screening: surface position marked by the open 
circle is not reachable. Typically, in colloid deposition monolayer or 
few-layer deposits are formed and the dominant effect is jamming, as 
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DEPOSITION OF SUBMICRON PARTICLES 423 

FIGURE 1 Possible configurations of particles at surfaces. From left to right, A - 
particles deposited directly on the collector; B -- particles deposited on top of other 
particlcs. We next show an cxamplc of jamming. C ~ a particle marked by an open circle 
cannot f i t  i n  the lowest layer at the surface. A top view of a more realistic two- 
dimensional (20)  surface configuration i s  shown in the inset. The rightmost example, E, 
illustrates screening: surface position marked by the open circle is not reachable. 

will be discussed later. Screening plays the dominant role in deposition 
of multiple layers and, together with the transport mechanism, de- 
termines the morphology of the growing surface. In addition, the 
configuration on the surface depends on the transport mechanism 
of the particles to it  and on the particle motion on the surface, as well 
as possible detachment. Particle motion is typically negligible for 
colloidal particles but may be significant for proteins. 

1.3. Role of Dimensionality and Relation 
to Other Systems 

An important feature of surface deposition is that for all practical 
purposes it is essentially a 2 0  problem. As a result, any mean-field, 
rate-equation, effective-field, rtc. ,  approaches which are usually all 
related in that they ignore long-range correlations and fluctuation 
effects, may not be applicable. Indeed, it is known that as the di- 
mensionality of a many-body interacting system decreases, fluctua- 
tions play a larger role. Dynamics of important physical, chemical, 
and biological processes [6 - 71 provide examples of strongly fluctuat- 
ing systems in low dimensions, D =  1 or 2. These processes include 
surface adsorption on planar substrates or on large collectors. The 
surface of the latter is semi-two-dimensional owing to their large size 
as compared with the size of the deposited particles. 
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424 V. PRIVMAN 

The classical chemical reaction - diffusion kinetics corresponds to 
D = 3. However, heterogeneous catalysis generated interest in D = 2. 
For both deposition and reactions, some experimental results exist 
even in D =  1 (see later). Finally, kinetics of ordering and phase 
separation, largely amenable to experimental probing in D = 3 and 
2, attracted much recent theoretical effort in D =  I ,  2. 

Models in D =  I ,  and sometimes in D = 2 ,  allow derivation of ana- 
lytical results. Furthermore, it turns out that all three types of model: 
deposition - relaxation, reaction -diffusion, phase separation, are in- 
terrelated in many, but not all, of their properties. This observation 
is by no means obvious. It is model-dependent and can be firmly 
established [6 ,7]  only in low dimensions, mostly in D = I .  

Such low-dimensional nonequilibrium models pose several interest- 
ing challenges theoretically and numerically. While many exact, asym- 
ptotic, and numerical results are already available in the literature 
[6,7], this field presently provides examples of properties which lack 
theoretical explanation even in 1 D. Numerical simulations are chal- 
lenging and require large scale computational effort already for ID 
models. For more experimentally relevant 2 0  cases, where analytical 
results are scarce, difficulty in numerical simulations has been the 
limiting factor in the understanding of many open problems. 

1.4. Outline of this Review 

The purpose of this article is to  provide an introduction to the field of 
nonequilibrium surface deposition models of extended particles. By 
“extended” we mean that the main particle - particle interaction effect 
will be jamming, Le., mutual exclusion. No comprehensive survey of 
the literature is attempted. The relation of deposition to other low- 
dimensional models mentioned earlier will be referred to in detail 
only in few cases. The specific models and examples selected for a 
more detailed exposition, i.e., models of deposition with diffusional 
relaxation, were biased by the author’s own work. 

The outline of the review is as follows. The rest of this introductory 
section is devoted to defining the specific topics of surface deposition 
to be surveyed. Section 2 describes the simplest models of random 
sequential adsorption. Section 3 is devoted to deposition with relax- 
ation, with general remarks followed by definition of the simplest, 
I D  models of diffusional relaxation for which we present a more 
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DEPOSITION OF SUBMICRON PARTICLES 425 

detailed description of various theoretical results. Multilayer deposi- 
tion is also commented on in Section 3. More numerically-based 
2 0  results for deposition with diffusional relaxation are surveyed 
in Section 4. Section 5 presents brief concluding remarks. 

Surface deposition is a vast field of study. Our emphasis here will be 
on those deposition processes where the particles are ‘‘large’’ as com- 
pared with the underlying atomic and morphological structure of the 
substrate and as compared with the range of the particle - particle and 
particle -substrate interactions. Thus, colloids, for instance, involve 
particles of submicron to several micron size. We note that 1 pm= 
I O O O O A ,  whereas atomic dimensions are of order 1 A, while the 
range over which particle - surface and particle -particle interactions 
are significant, as compared with kT, is typically of order 100 A or less. 
Extensive theoretical study of such systems is relatively recent and it  
has been motivated by experiments where submicron-size colloid, poly- 
mer, and protein “particles” were the deposited objects [l -4, 8- 181. 

Perhaps the simplest and the most studied model with particle ex- 
clusion is Random Sequential Adsorption (RSA). The RSA model, 
to be described in detail in Section 2, assumes that particle transport 
(incoming flux) onto the surface results in a uniform deposition at- 
tempt rate, R,  per unit time and area. In the simplest formulation, 
one assumes that only monolayer deposition is allowed. Within this 
monolayer deposit, each new arriving particle must either fit in an 
empty area allowed by the hard-core exclusion interaction with the 
particles deposited earlier, or the deposition attempt is rejected. 

The basic RSA model will be described shortly, in Section 2. Recent 
work has been focused on its extensions to allow for particle relaxa- 
tion by diffusion, see Sections 3 and 4, to include detachment pro- 
cesses, and to allow multilayer formation. The latter two extensions 
will be briefly surveyed in Section 3. Several other extensions will not 
be discussed [l -41. 

2. RANDOM SEQUENTIAL ADSORPTION 

2.1. The RSA Model 

The irreversible Random Sequential Adsorption (RSA) process [ 19, 
201 models experiments of submicron particle deposition by assuming 
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426 V. PRIVMAN 

a planar 2 0  substrate and, in the simplest case, continuum (off-lattice) 
deposition of spherical particles. However, other RSA models have 
also received attention. In 2 0 ,  noncircular cross-section shapes as 
well as various lattice-deposition models were considered [ 19, 201. 
Several experiments on polymers and attachment of fluorescent units 
on DNA molecules [18] (the latter is usually accompanied by motion 
of these units on the DNA and detachment) suggest consideration of 
the lattice-substrate RSA processes in I D .  RSA processes have also 
found applications in traffic problems and certain other fields. Our 
presentation in this section aims at defining some RSA models and 
outlining characteristic features of their dynamics. 

Figure 2 illustrates the simplest possible monolayer lattice RSA 
model: irreversible deposition of dimers on the linear lattice. An 
arriving dimer will be deposited if the underlying pair of lattice sites 
are both empty. Otherwise, it is discarded, which is shown schem- 
atically by the two dimers above the surface layer. Their deposition 
on the surface is not possible unless detachment and/or motion of 
monomers or whole dimers clear the appropriate landing sites. 

Let us consider the irreversible RSA without detachment or dif- 
fusion. The substrate is usually assumed to be empty initially, at f = 0. 
In the course of time t ,  the coverage, p(t),  increases and builds up to 
order 1 on the time scales of order ( R V ) - ’ ,  where R was defined earlier 
as the deposition attempt rate per unit time and area of the surface, 
while V is the particle D-dimensional “volume”. For deposition of 
spheres on a planar surface, V is actually the cross-sectional area. 

At large times the coverage approaches the jammed-state value 
where only gaps smaller than the particle size were left in the mono- 
layer. The resulting state is .less dense than the fully-ordered, close- 
packed coverage. For the D =  1 deposition shown in Figure 2 the 
fully-ordered state would have p= 1. The variation of the RSA cover- 
age is illustrated by the lower curve in Figure 3 .  

FIGURE 2 Deposition of dimers on the ID lattice. Only one of the three hatched 
dimers can deposit on the surface. which then becomes fully jammed in the interval 
shown. 
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DEPOSITION OF SUBMICRON PARTICLES 427 

close-packed 

jammed 

t 
0 b 

FIGURE 3 Schematic variation of’the coverage. / I ( / ) ,  with time for deposition without 
(lower curve) and with (upper curve) diffusional or other relaxation. The “ordered” 
density corrcsponds to close packing. 

At early times the monolayer deposit is not dense and the deposi- 
tion events are largely uncorrelated. In this regime, mean-field-like, 
low-density approximation schemes are useful [ 2 1 ~  231. Deposition of 
k-mer particles on the linear lattice in 1D was in fact solved exactly 
for all times [24]. In D = 2 ,  extensive numerical studies were reported 
[23,25 ~ 361 of the variation of coverage with time and large-time 
asymptotic behavior which will be discussed shortly. Some exact 
results [24] for correlation properties are available in 1D. Numerical 
results [27] for correlation properties have been obtained in 2 0 .  

2.2. The Large-time Behavior in RSA 

The large-time deposit has several characteristic properties. For lattice 
models, the approach to the jammed-state coverage is exponential 
[36-381. This was shown to follow from the property that the final 
stages of deposition are in few sparse, well separated surviving landing 
sites. Estimates of decrease in their density at late stages suggest that 

where P is the lattice spacing and D is the dimensionality of the sub- 
strate. The coefficient in Eq. (1)  is of order PD/V if the coverage is 
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428 V. PRIVMAN 

defined as the fraction of lattice units covered, i.e., the dimension- 
less fraction of area covered, also termed the coverage fraction, so 
that coverage as density of particles per unit volume would be V - ’ p .  
The detailed behavior depends of the size and shape of the deposit- 
ing particles as compared with the underlying lattice unit cells. 

However, for continuum off-lattice deposition, formally obtained as 
the limit 1 - 0 ,  the approach to the jamming coverage is power-law. 
This interesting behavior [37, 381 is due to the fact that for large times 
the remaining voids accessible to particle deposition can be of sizes 
arbitrarily close to those of the depositing particles. Such voids are, 
thus, reached with very low probability by the depositing particles, 
the flux of which is uniformly distributed. The resulting power-law 
behavior depends on the dimensionality and particle shape. For in- 
stance, for D-dimensional cubes of volume V,  

while for spherical particles, 

For D > 1, the expressions Eqs. (2,3), and similar relations for 
other particle shapes, are actually empirical asymptotic laws which 
have been verified, mostly for D = 2 ,  by extensive numerical simula- 
tions [4,25 - 361. The most studied 2 0  geometries are circles (cor- 
responding to the deposition of spheres on a planar substrate) and 
squares. The jamming coverages are 

much lower than the close-packing values, 1 and ( n / 2 d )  E 0.907, 
respectively. For square particles, the crossover to continuum in 
the limit k + 00 and k‘ 4 0, with fixed VliD = kk‘ in deposition of k x 
k x . . . x k lattice squares, has been investigated in some detail [36], 
both analytically (in any D) and numerically (in 20) .  

The correlations in the large-time jammed state are different from 
those of the equilibrium random gas of particles with density near 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



DEPOSITION OF SUBMICRON PARTICLES 429 

p(00). In fact, the two-particle correlations in continuum deposition 
develop a weak singularity at contact, and correlations generally re- 
flect the full irreversibility of the RSA process [24,27,38]. 

3. DEPOSITION WITH RELAXATION 

3.1. Detachment and Diffusional Relaxation 

Monolayer deposits may relax, i.e., explore more configurations, by 
particle motion on the surface, by their detachment, as well as by 
motion and detachment of the constituent monomers or recombined 
units. In fact, detachment has been experimentally observed in de- 
position of colloid particles which were otherwise quite immobile 
on the surface [39]. Theoretical interpretation of colloid particle de- 
tachment data has proved difficult, however, because binding to the 
substrate, once the particle is deposited, can be different for different 
particles, whereas the transport to the substrate, i.e., the flux of the 
arriving particles in the deposition part of the process, typically by 
convective diffusion, is more uniform. Detachment also plays a role 
in deposition on DNA molecules [18]. 

Recently, more theoretically motivated studies of the detachment 
relaxation processes, in some instances with surface diffusion allowed 
as well, have led to interesting model studies [40-461. These investiga- 
tions did not always assume detachment of the original units. Models 
involving monomer recombination prior to detachment, of k-mers 
in D = 1, have been mapped onto certain spin models and symmetry 
relations were identified which allowed derivation of several exact and 
asymptotic results on the correlations and other properties [40-461. 
We note that deposition and detachment combine to drive the dyna- 
mics into a steady state, rather than a jammed state as in ordinary 
RSA. These studies have been largely limited thus far to 1D models. 

We now turn to particle motion on the surface, in a monolayer 
deposit, which was experimentally observed in deposition of proteins 
[17] and also in deposition on DNA molecules [18,47]. From now 
on, we consider diffusional relaxation, i x . ,  random hopping on the 
surface in the lattice case. The dimer deposition in lD, for instance, 
is shown in Figure 2. Hopping of dimer particles one site to the left 
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430 V. PRIVMAN 

or to the right is allowed only if the target site is not occupied. Such 
hopping can open a two-site gap to allow additional deposition. 
Thus, diffusional relaxation lets the deposition process reach denser, 
in fact close-packed, configurations. Initially, for short times, when the 
empty area is plentiful, the effect of the in-surface particle motion 
will be small. However, for large times, the density will exceed that 
of the RSA process, as illustrated by the upper curve in Figure 3. 

I t  is important to emphasize that deposition and diffusion are two 
independent processes going on at the same time. External particles 
arrive at the surface with a fixed rate per unit area. Those finding open 
landing sites are deposited; others are discarded. At the same time, 
internal particles, those already on the surface, attempt, with some 
rate, to hop to a nearby site. They actually move only if the target 
site is available. 

3.2. One-dimensional Models 

Further investigation of this effect is much simpler in 1D than in 2 0 .  
Let us. therefore, consider the 1 D case first, postponing the discussion 
of 2 0  models to the next section. Specifically, consider deposition of 
k-mers of fixed length, V .  By keeping the length fixed, we can also 
naturally consider the continuum limit of no lattice by having the 
lattice spacing vanish as k + 00. This limit corresponds to continuum 
deposition if we take the underlying lattice spacing e =  V/k. Since 
the deposition attempt rate, R ,  was defined per unit area (unit length 
here), it has no significant k-dependence. However, the added dif- 
fusional hopping of k-mers on the ID lattice, with the attempt rate to 
be denoted by H ,  and hard-core or similar particle interaction, must be 
k-dependent. Indeed, we consider each deposited k-mer particle as 
randomly and independently attempting to move one lattice spacing 
to the left or to the right with the rate H / 2  per unit time. Particles 
cannot run over each other so some sort of hard-core interaction 
must be assumed, i.e., in a dense state most hopping attempts will 
fail. However, if left alone, each particle would move diffusively 
for large time scales. In order to have the resulting diffusion constant, 
V, finite in the continuum limit k + CQ, we must assume that 

H cx V/ t2  = Vk'f V 2  

which is only valid in 1 D. 
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DEPOSITION OF SUBMICRON PARTICLES 43 1 

Each successful hopping of a particle results in motion of one 
empty lattice site. It is useful to reconsider the dynamics of particle 
hopping in terms of the dynamics of this rearrangement of empty 
area fragments [48-501. Indeed, if several of these empty sites are 
combined to form large enough voids, deposition attempts can suc- 
ceed in regions of particle density which would be jammed in the 
ordinary RSA. In terms of these new “diffuser particles”, which are 
the empty lattice sites of the deposition problem, the process is in 
fact that of reaction-diffusion. Indeed, k reactants (empty sites) must 
be brought together by diffusional hopping in order to have finite 
probability of their annihilation, i.e., disappearance of a group of con- 
secutive nearest-neighbor empty sites due to successful deposition. 
Of course, the k-group can also be broken apart due to diffusion. 
Therefore, the k-reactant annihilation is not instantaneous in the re- 
action nomenclature. Such k-particle reactions are of interest on their 
own [ 5  1 ~ 571. 

3.3. Beyond the Mean-field Approximation 

The simplest mean-field rate equation for annihilation of k reactants 
describes the time dependence of the coverage, p(t),  in terms of the 
reactant density 1 - p, i.e., the density of the empty spaces, 

where r is the effective rate constant. Note that we assume that the 
close-packing coverage is 1 in 1D. There are two problems with this 
approximation. Firstly, it turns out that for k = 2  the mean-field ap- 
proach breaks down. Diffusive-fluctuation arguments for non-mean- 
field behavior have been advanced for several chemical reactions 
[5  1,53,58,59]. In 1 D, several exact calculations support this conclu- 
sion [60-661. The asymptotic large-time behavior turns out to be 

1 - p -  I / &  ( k = 2 ,  D =  l ) ,  (7) 

rather than the mean-field prediction - l j t .  The coefficient in Eq. (7) 
is expected to be universal, when expressed in an appropriate dimen- 
sionless form by introducing the single-reactant diffusion constant. 

The power law, Eq. (7), was confirmed by extensive numerical si- 
mulations of dimer deposition [67] and by exact solution [68] for one 
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432 V. PRIVMAN 

particular value of H for a model with dimer dissociation. The latter 
work also yielded some exact results for correlations. Specifically, 
while the connected particle - particle correlations spread diffusively 
in space, their decay time is nondiffusive [68]. Series expansion studies 
of models of dimer deposition with diffusional hopping of the whole 
dimers or their dissociation into hopping monomers, has confirmed 
the expected asymptotic behavior and also provided estimates of the 
coverage as a function of time [69]. 

The case k = 3 is marginal with the mean-field power law modified 
by logarithmic terms. The latter were not observed in Monte Carlo 
studies of deposition [49]. However, extensive results are available 
directly for three-body reactions [ 5 3  - 561, including verification of 
the logarithmic corrections to the mean-field behavior [54- 561. 

3.4. Continuum Limit of Off-lattice Deposition 

The second problem with the mean-field rate equation is identified 
when one attempts to use it in the continuum limit corresponding to 
off-lattice deposition, i.e., for k -+ 00. Note that Eq. (6) has no regu- 
lar limit as k -+ 00. The mean-field approach is essentially the fast dif- 
fusion approximation assuming that diffusional relaxation is efficient 
enough to equilibrate nonuniform density fluctuations on time scales 
which are short as compared with the time scales of the deposition 
events. Thus, the mean-field results are formulated in terms of the uni- 
form properties, such as the density. It turns out, however, that the 
simplest, kth-power of the reactant density form Eq. (6)  is only appro- 
priate for times t >> ekp'/(RV). 

This conclusion was reached [48] by assuming the fast-diffusion, 
randomized hard-core reactant system form of the inter-reactant dis- 
tribution function in 1D. This approach, not detailed here, allows 
estimation of the limits of validity of the mean-field results and it 
correctly suggests mean-field validity for k = 4,5, . . . , with logarithmic 
corrections for k = 3  and complete breakdown of the mean-field as- 
sumptions for k = 2. This detailed analysis yields the modified mean- 
field relation 
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DEPOSITION OF SUBMICRON PARTICLES 433 

where y is some effective dimensionless rate constant. This new ex- 
pression applies uniformly as k + m. Thus, the continuum deposi- 
tion is also asymptotically mean-field, with the essentially-singular 
rate equation 

The approach to the full, saturation coverage for large times is ex- 
tremely slow, 

( 10) 

Similar predictions were also derived for k-particle chemical reac- 
tions [53]. 

3.5. Comments on Multilayer Deposition 

When particles are allowed to attach also on top of each other, with 
possibly some rearrangement processes allowed as well, multilayer 
deposits will be formed. I t  is important to note that the large-layer 
structure of the deposit and fluctuation properties of the growing 
surface will be determined by the transport mechanism of particles to 
the surface and by the allowed relaxations (rearrangements). Indeed. 
these two characteristics determine the screening properties of the 
multilayer formation process which in turn shape the deposit morpho- 
logy, which can range from fractal to dense, and the roughening of the 
growing deposit surface. There is a large body of research studying 
such growth, with recent emphasis on the growing surface fluctuation 
properties. 

However, the feature characteristic of the RSA process, i.e., the 
exclusion due to particle size, plays no role in determining the 
universal, large-scale properties of thick deposits and their surfaces. 
Indeed, the RSA-like jamming will only be important for detailed 
morphology of the first few layers in a multilayer deposit. However, 
i t  turns out that RSA-like approaches (with relaxation) can be useful 
in modeling granular compaction [70]. 

In view of the above remarks, multilayer deposition models in- 
volving jamming effects were relatively less studied. They can be 
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divided into two groups. Firstly, structure of the deposit in the first 
few layers is of interest [71 -731 because they retain memory of the 
surface. Variation of density and other correlation properties away 
from the wall has structure on the length scale of particle size. These 
typically oscillatory features decay away with the distance from the 
wall. Numerical Monte Carlo simulation aspects of continuum multi- 
layer deposition (ballistic deposition of 3 0  balls) were reviewed in 
Ref. [73]. Secondly, few-layer deposition processes have been of in- 
terest in some experimental systems. Mean-field theories of multilayer 
deposition with particle size and interactions accounted for were for- 
mulated [74] and used to fit such data [15, 16,75,76]. 

4. TWO-DIMENSIONAL DEPOSITION 
WITH DIFFUSIONAL RELAXATION 

4.1. Combined Effects of Jamming and Diffusion 

We now turn to the 2 0  case of deposition of extended objects on 
planar surfaces, accompanied by diffusional relaxation, assuming 
monolayer deposits. We note that the available theoretical results 
are limited to  few studies [34,77 -791. They indicate a rich pattern of 
new effects as compared with 1D. In fact, there exists extensive litera- 
ture [81] on deposition with diffusional relaxation in other models, in 
particular those where the jamming effect is not present or plays no 
significant role. These include deposition of monomer particles, 
usually of atomic dimensions, which align with the underlying lattice 
without jamming, as well as models where many layers are formed 
(mentioned in the preceding section). 

The 2 0  deposition with relaxation of extended objects is of interest 
in certain experimental systems where the depositing objects are pro- 
teins [17]. Here we focus on the combined effect of jamming and dif- 
fusion, and emphasize dynamics at large times. For early stages of the 
deposition process, low-density approximation schemes can be used. 
One such application was reported [34] for continuum deposition of 
circles on a plane. 

In order to identify new features characteristic of 2 0 ,  let us consider 
deposition of 2 x 2 squares on the square lattice. The particles are 
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exactly aligned with the 2 x 2 lattice sites as shown in Figure 4. 
Furthermore, we assume that the diffusional hopping is along the 
lattice directions * . x  and one lattice spacing at a time. In this 
model dense configurations involve domains of four phases as shown 
in Figure 4. As a result, immobile fragments of empty area can exist. 
Each such single-site vacancy (Fig. 4) serves as a meeting point of 
four domain walls. 

Here by “immobile” we mean that the vacancy cannot move due to 
local motion of the surrounding particles. For it to move, a larger 
empty-area fragment must first arrive, along one of the domain 
walls. One such larger empty void is shown in Figure 4. Note that it 
serves as a kink in the domain wall. Existence of locally immobile 
(“frozen”) vacancies suggests possible frozen glassy behavior with 
extremely slow relaxation, at least locally. The full characterization 
of the dynamics of this model requires further study. The first num- 
erical results [77] do provide some answers which will be reviewed 
shortly. 

FIGURE 4 Fragment of a deposit configuration in the deposition of 2 x 2 squares. 
Illustrated are one single-site frozen vacancy at which four domain walls meet (indicated 
by arrows), and one dimer vacancy which C ~ U S C S  a kink in one of the domain walls. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



436 V. PRIVMAN 

4.2. Ordering by Shortening of Domain Walls 

We first consider a simpler model depicted in Figure 5. In this model 
[78,79] the extended particles are squares of size & x &. They are 
rotated 45” with respect to the underlying square lattice. Their dif- 
fusion, however, is along the vertical and horizontal lattice axes, by 
hopping one lattice spacing at a time. The equilibrium variant of this 
model (without deposition, with fixed particle density) is the well- 
studied hard-square model [82] which, at large densities, phase sepa- 
rates into two distinct phases. These two phases also play role in the 
late stages of RSA with diffusion. Indeed, at large densities the empty 
area is stored in domain walls separating ordered regions. One such 
domain wall is shown in Figure 5. Snapshots of actual Monte Carlo 
simulation results can be found in Refs. [78,79]. 

Figure 5 illustrates the process of ordering which essentially 
amounts to shortening of domain walls. In Figure 5, the domain wall 
gets shorter after the shaded particles diffusively rearrange to open 
up a deposition slot which can be covered by an arriving particle. 

FIGURE 5 particles on the square lattice. 
Diffusional motion during time interval from t ,  to t 2  can rearrange the empty area 
“stored” in the domain wall to open up a new landing site for deposition. This is 
illustrated by the shaded particles. 

Illustration of deposition of & x 
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Numerical simulations [78,79] find behavior reminiscent of the 
low-temperature equilibrium ordering processes [83 - 851 driven by 
diffusive evolution of the domain-wall structure. For instance, the 
remaining uncovered area vanishes according to 

1 
1 - p ( t )  - - Ji' 

This quantity, however, also measures the length of domain walls in 
the system (at large times). Thus, disregarding finite-size effects and 
assuming that the domain walls are not too convoluted (as confirmed 
by numerical simulations), we conclude that the power law, Eq. ( 1  l) ,  
corresponds to typical domain sizes growing as - A, reminiscent of 
the equilibrium ordering processes of systems with nonconserved order 
parameter dynamics [83 - 851. 

4.3. Numerical Results for Models 
with Frozen Vacancies 

We now turn again to the 2 x 2 model of Figure 4. The equilibrium 
variant of this model corresponds to hard-squares with both nearest 
and next-nearest neighbor exclusion [82,86,87]. I t  has been studied 
in lesser detail than the two-phase hard-square model described in 
the preceding paragraphs. In fact, the equilibrium phase transition 
has not been fully classified (while it was Ising for the simpler model). 
The ordering at low temperatures and high densities was studied 
[86]. However, many features noted, for instance large entropy of the 
ordered arrangements, require further investigation. The dynamical 
variant (RSA with diffusion) of this model was studied numerically 
[77]. The configuration of the single-site frozen (locally immobile) 
vacancies and the associated network of domain walls turn out to be 
boundary-condition sensitive. For periodic boundary conditions the 
density freezes at values 1 - p - L ~ I ,  where L is the linear system size. 

Preliminary indications were found [77] that the domain size and 
shape distributions in such a frozen state are nontrivial. Extrapolation 
L + 03 indicates that the power law behavior similar to Eq. (1 1) is 
nondiffusive: the exponent l j 2  is replaced by -0.57. However, the 
density of the smallest mobile vacancies, i .e.,  dimer kinks in domain 
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walls, one of which is illustrated in Figure 4, does decrease diffusively. 
Further studies are needed to clarify fully the ordering process as- 
sociated with the approach to the full coverage as f .+ cc and L - oc 
in this model. 

Even more complicated behaviors are possible when the depositing 
objects are not symmetric and can have several orientations as they 
reach the substrate. In addition to translational diffusion (hopping), 
one has to consider possible rotational motion. The square-lattice 
deposition of dimers, with hopping processes including one-lattice- 
spacing motion along the dimer axis and 90" rotations about a con- 
stituent monomer, was studied [SO]. The dimers were allowed to 
deposit vertically and horizontally. In this case, the full close-packed 
coverage is not achieved at all because the frozen vacancy sites can 
be embedded in, and move by diffusion in, extended structures of 
different topologies. These structures are probably less efficiently 
demolished by the motion of mobile vacancies than the elimination 
of localized frozen vacancies in the model of Figure 4. 

5. CONCLUSION 

In summary, we reviewed theoretical developments in the description 
of deposition processes of extended objects, with jamming and dif- 
fusional relaxation. While significant progress has been achieved in 
ID, the 2 0  systems require further study. Most of these investiga- 
tions will involve large-scale numerical simulations. 

Other research directions that require further work include multi- 
layer deposition and particle detachment, especially the theoretical 
description of the latter, including the description of the distribution 
of values/shapes of the primary minimum in the particle- surface 
interaction potential. This would allow one to advance beyond the 
present theoretical trend of studying deposition as mainly the process 
of particle transport to the surface, with little or no role played by the 
details of the actual particle- surface and particle- particle double- 
layer and other interactions. Ultimately, we would like to interrelate 
the present deposition studies and approaches in the study of adhesion 
[4], of typically larger particles of sizes up to several microns, at 
surfaces. 
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